Workshop on the Reactivity and Stability of Surfaces and Nano Particles at Elevated Pressures

Irsee

September 27-30,2006

High pressure X-ray photoelectron spectroscopy: A surface sensitive tool for the investigation of working catalysts

A. Knop-Gericke

Fritz-Haber-Institut, Berlin, Department of Inorganic Chemistry

Introduction

Selectivity issue: what defines selectivity?

Model of overlapping TDS peaks

Acetylene hydrogenation (TDS)

Khan NA, Shaikhutdinov SK, Freund HJ CATALYSIS LETTERS, 108 (3-4) 159-164, 2006

Summary

1. <u>Subsurface H</u>: effective for alkene-to-alkane but also for alkyne-to-alkane transformation

Pulse experiments 1-pentyne Adsorption

- **First pulse shows activity**
- 65% conversion
 - 38.5% 1-pentene
 - 6.5% trans-2-pentene
 - 3.5% *cis*-2-pentene
 - 6.5% pentane
 - 11.5% Unknown

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)

Hydrogenation

1. 1-Pentyne hydrogenation over 1% Pd/Al_2O_3 in a closed loop-reactor, t=5 min. (after repeated runs at each condition)

2. 1-Pentyne hydrogenation over 1% Pd/Al_2O_3 in continuous flow (RT)

 $H_2:C_5 = 4:1$ $H_2:C_5 = 3:1$ se

total hydrogenation selective hydrogenation

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes

During TEOM experiment

	40 mins				170 mins			
	1-pentyne	1-pentene	2-pentenes	n-pentane	1-pentyne	1-pentene	2-pentenes	n-pentane
Pd/Al ₂ O ₃ , 100 % H ₂	trace	trace	trace	100	trace	trace	trace	100
Pd Black, 100 % H ₂	0.1	trace	0.1	99.8	3.6	0.5	11.3	84.5
Pd Black, 5 % H ₂	58.7	40.1	trace	1.2	42.8	54.7	0.2	2.3
Al ₂ O ₃ , 100 % H ₂	81.1	16.2	0.7	2.0	74.9	22.4	0.7	1.9
Quartz Wool, 358 K	81.6	17.1	0.2	1.1	-	-	-	-
Quartz Wool, 303 K	89.2	10.6	trace	0.3	-	-	-	-

During TEOM experiment

	40 mins				170 mins			
	1-pentyne	1-pentene	2-pentenes	n-pentane	1-pentyne	1-pentene	2-pentenes	n-pentane
Pd/Al ₂ O ₃ , 100 % H ₂	trace	trace	trace	100	trace	trace	trace	100
Pd Black, 100 % H ₂	0.1	trace	0.1	99.8	3.6	0.5	11.3	84.5
Pd Black, 5 % H ₂	58.7	40.1	trace	1.2	42.8	54.7	0.2	2.3
Al ₂ O ₃ , 100 % H ₂	81.1	16.2	0.7	2.0	74.9	22.4	0.7	1.9
Quartz Wool, 358 K	81.6	17.1	0.2	1.1	-	-	-	-
Quartz Wool, 303 K	89.2	10.6	trace	0.3	-	-	-	-

During TEOM experiment

Up to x5 more carbon is retained in the selective hydrogenation regime

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes
- 4. <u>Cuptake</u> is significantly more in the selective regime

In situ XPS system

Reaction in the mbar p region (in-situ XPS)

	5% Pd/CNT	3% Pd/Al ₂ O ₃	Pd foil	Pd(111)
Conversion [%]	~ 10	~5	~2.5	<1
Selectivity Pentene [%]	~95	~80	~98	100
Selectivity Pentane [%]	~5	~20	~2	_

Recation conditions: C5/H2 = 1:9, 1 mbar, 358 K

In-situ XPS: Pd 3d depth profiling

In-situ XPS: C1s (Switching off experiments)

In-situ XPS: Pd 3d (Switching off experiments)

In-situ XPS: Pd vs. C depth profiling

HRTEM: lattice expansion

5% Pd/CNT after reaction

Pd nanoparticle (5nm x 6nm) with typical lattice dilatations, angular distortions are negligible background: rather disordered graphitic

layers of a CNT

0.2025 nm	+4.2%	0.1944 nm	200
0.2027 nm	+4.3%	0.1944 nm	020
0.1421 nm	+3.4%	0.1374 nm	220
0.1434 nm	+4.4%	0.1374 nm	-220

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes
- 4. <u>Cuptake</u> is considerably more in the selective regime
- 5. <u>Pd-C surface phase</u> forms in the early stage of selective pentyne hydrogenation & there is significant amount of <u>subsurface C</u> below of it

Model (during the reaction)

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes
- 4. <u>Cuptake</u> is considerably more in the selective regime
- 5. <u>Pd-C surface phase</u> forms during selective hydrogenation of pentyne & there is significant amount of <u>subsurface C</u> below of it
- 6. <u>Dynamic</u> behaviour of Pd-C and subsurface C

Reactivity Studies

• Transient H₂ formation as a function of temperature

• beam flux of 0.04 ML/sec ethene

The initial sticking coefficient is not influenced by the temperature change, but the initial H_2 formation increases before a steady state reaction sets in.

Gabasch et al.

J.Phys. Chem. B 110(10) 2006, 4949

Proposed Model:

3 different stages can be distinguished:

• In situ measurements: 2*10-3 mbar

 $C_2H_4:O_2=1:3$, heating ramp 10K*min⁻¹

• In situ measurements:

During the oxidation a carbon containing phase is formed and changes the selectivity from CO_2 towards CO

[1] J. N. Andersen, et al. Phys. Rev. B 50 1994 17525

Conclusions

- During ethene oxidation the incorporation of carbon leads to the formation of a PdC phase
- The appearance of this phase is accompanied by strongly enhanced CO selectivity

Thanks!

Mounir Chamam, Attila Wootsch (Institute of Isotops, Hungarian Academy of Science, Budapest)

Arran Canning, Jonathan Gamman, David Jackson (University of Glasgow)

James McGregor, Lynn Gladden (University of Cambridge)

Olaf Schwarzkopf (BESSY)

Michael Hävecker, Spiros Zafeiratos, Elaine Vass, Peter Schnörch, Hermann Sauer, Rgbert Schlögl (FHI)

Innovative Station for In Situ Spectroscopy A project of BESSY and the Dep. Inorganic Chemistry, Fritz-Haber-Institut

Installation of a beamline exclusively used for in situ spectroscopy in the soft X-ray range

Installation of infrastructure optimized for these kind of experiments on site (e.g. chemical lab, gas supply, gas analytics)

Later, further implementation of other in situ spectroscopy techniques: multi wavelength Raman, UV-Vis, fluorescence yield ?!

Start of user operation of the beamline: 2007

MAX-PLANCK-GESELLSCHAFT

Thanks to:

- Detre Teschner, Elaine Vass, Michael Hävecker, Evgueni Kleimenov,,Spiros Zafeiratos, Péter Schnörch, Hermann Sauer, Robert Schlögl (FHI, Dept. AC)
- Harald Gabasch, Bernd Klötzer, Werner Unterberger, Konrad Hayek (University Innsbruck, Dept. Physical Chemistry)
- Balazs Aszalos-Kiss, Dima Zemlianov (Purdue University)
- Mounir Chamam, Attila Wootsch (Institute of Isotops, Budapest)
- Arran S. Canning, Jonathan J. Gamman, S. David Jackson (Glasgow University)
- James McGregor, Lynn F. Gladden (Cambrigde University)
- BESSY staff !!